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ABSTRACT

The plane strain problem of a multi-layered composite with

parallel cracks in considered. The main objective of this paper

is to study the interaction between parallel and collinear cracks.

The problem is formulated in terms of a set of simultaneous

singular integral equations which are solved numerically. The

effect of material properties on the interaction between cracks

is also demonstrated.
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der Fraunhofer-Gesellschaft, 78 Freiburg i. Br., The National
Science Foundation under the Grant GK-11977, and the National
Aeronautics and Space Administration under the Grant
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INTRODUCTION

Welded and bonded structures have been observed to contain

multiple cracks. The study of the interaction between such

cracks has also been of considerable interest to reactor design-

ers. The problem of a multi-layered composite containing a

single crack was studied by Erdogan and Gupta [1-2]. The inter-

action between multiple cracks in an isotropic medium and collin-

ear cracks in a layered composite has been considered by Ratwani

[3-4].

In the present study, the analytical methods of [1-4] have

been extended to treat the layered composite containing parallel

and collinear cracks. In particular, the plane strain problem

of an elastic layer bonded to two dissimilar half-planes is

considered. The layer medium contains one or two symmetrically

placed collinear flaws and one of the half-planes is assumed to

have a single parallel flaw. The procedure, of course, can

easily treat any composite containing n elastic layers and cracks

located along m parallel planes. For the sake of simplicity,

only the symmetric problem is studied here. The anti-symmetric

loading case can be handled in an analogous manner.

Stress intensity factors at all the crack tips are computed.

Their variation with respect to the crack locations, geometry

and material of the composite are presented graphically.
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FORMULATION OF THE PROBLEM

Consider the plane problem, shown in Figure 1, containing

one or two collinear cracks in each plane. The cracks are

assumed to be located symmetrically with respect to the y-axis.

In this paper, our primary interest is in the disturbed stress

state caused by the cracks. Hence, assuming that the overall

stress distribution aij° in the imperfection-free medium is

Tknown, the stress state aTj in the cracked medium may be ex-

pressed as

aiT = ijo + ij (1)

where aij is the disturbed stress state obtained by subjecting

the crack surfaces:to the following tractions.

lyy (x,h) = - a O°(x,h) = p2(x)
ayy x, : -yy p,

C<Ix!<D,
Cxy (x,h) = - oxy (x,h) = pl(x)

(2)

Cyy (x,-hl) =- ayy°(x,-hl) = q2 (x)

A<IxI<B.

xy3 (xx-hl) = - axy -(x'-h
l
) = ql(x)

Pi(x) and qi(x) satisfy a Holder condition in their respective

ranges.

The integral transform technique, described in detail for

a single crack [1] and for multiple cracks [3], is used here to

formulate the problem in terms of four unknown functions defined

by
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fl(x) = ( 2 Ul), f2(x) = -ax(v2-vl), (C<Ixl<D, y=h),

(3)

91(x) ax(u3u4) g2( x) a3(v3-v4)' (A<lxl<B y=-hl )

Note that the crack surfaces are the singular surfaces across

which the displacement vector suffers a discontinuity and the

unknown functions define the derivatives of the crack opening

displacements. For the sake of simplicity, the central plane

of the elastic layer is assumed to have the cracks. The case

when the crack lies at the interface between the bielastic media

has been treated in detail in [2].

Following the procedure of [1] and [3], a set of simultane-

ous singular integral equations of the first kind is derived,

expressed as follows:

2 6.. 2

f E f (t)[t-x + Kij(x,t)]dt + f k gk(T)Hik(x, T)dT
L1 j=l L

2
k=l

1+K
= 21 p(x) C<lxl<D, i=1,2,

(4)
2 2 6 ik

f I f.(t)Lij (x,t)dt + f I gk(T)[ + M ik(x,T)]dT
L
1

j:l L
2

k=l 

1+K 2

=- 2 qi(x) , A<Ixl<B, i=1,2,
2P2 2i

where L1- (C<Ixj<D) and L2 E (A<Ixl<B), and Ki = 3-4vi for

plane strain and K. = (3-vi)/(l+vi) for generalized plane

stress. p
i

and v
i

are the shear modulii and the Poisson's

ratios, for i=1,2, denoting the elastic layer by the subscript

1 and the half-planes by 2. The functions Kij, Lij, Hik and Mik
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are Fredholm kernels and are bounded in their respective closed

intervals. The expressions for these Fredholm kernels are given

as follows:

K (xt) s = (a) - 4ah
Kll(X't) = f D (a)o 

-2ah
e sinc(t-x)d:

K1 2 (x,t) = K2 1 (x,t) = 0

o sl((a) + 4ah
K22(x t ) = D (C)

O D2 (a)
e 2ah sina(t-x)da

HP12 1+K 1o o l
2- 2X3 f [X3S3() +

e-a(h+h1 )
D (a) sina(T-x)daDi:

P2 1 +K1o

H1 2 ( X, T') P -3 f [X3s3(a) -
'H1 2(X 'l) l~2 2l 3 0

(1 + 2chl1)s2 (a)]'

e- (h+hl )
DII(a) cosa(T-x)dcd

P 2 1 + coK1

H21(X 'T) =2 -p1 2X3 [A3 s 5 (a)

e-a(h+hl )
D2(a)T- cosa(T-x)da

P2 1 +K1 
H2 2 (XT) 2- 2 o [ s( )

2- 1 3 o

(1 - 2hl1)s4 (x)]'

(5)

+ (1+ 2ahl )s4 (0)].

e- (h+h1 )
eD2(a ) sina(T-x)da

Lij(x,t) =
(12-"1) (X1-X2)X3

22 1+K1)2 H ij(xt)
u22 (1+K1 ) 2 '

i ,j = 1,2
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M1 1 (x,T) =

M 1 2 (X,T) =

M2 1 (X,T) =

M2 2 (X,T) =

- f [ + ( (X1 -A2 ) A
3 3 + s8() + Di(a)D 2 (D ) {T 3s 7(a)

+ [s7(a)s8 (a) - 8ah(1- 2ahl)e4ah]e2ah}]e h l sina(T-x)da

1 7 [X3 - s6(a) + Dl((a)D2() 

+ [16a2 hh1 - s6(a)s7(a)]e-4ah}]e - 2 h l cosa(T-x)da

M1 2 (x,T)

11 - + s9 (a) + Dl(a)D2(a) {X3S 7( c)

- [s7 (c)s9 (a) - 8h(1 + 2ahl)]e' 4ah}]e- 2 oh l sina(T-x)da

where

=- ½2 + (4ah + le 2 h-2h)eah

-2ah 2ah
:2 + (4ah- Xle-2 )e-

1 + 1A 2A + 4a2h2 - 2le-2ah

- ½2 + (1 + 2ah)e 2ah

-22h
= 1 - 2ah - Xle

= 
2

- (1 - 2ah)e 2
a
h

: - 1 - 2ch + Xe-2

= (1 - 4a2 h1
2 )/X3

= 2 + e-4ah

-5-

D1 (a)

D2 (a)

Sl(a)

s2(a)

s3(a)

S4(a)

s5( C)

S6(a)

S7(O)

(6)



s8(a) = (1 - 2ah1 )2/X3

s9 (a) = (1 + 2ah
l
)2 /X3

and

X_"12 - 1P21

1 P2 + lIl2

Pl + 1J2 K1
2 P= + P2 (7)

"2 + "1K2
3 = 12 - P1l

The unknown functions fi and gi in equations (4) have

integrable singularities at the end points. Therefore, the

equations (4) must be solved subject to the singlevaluedness

conditions

D B
/ fi(t)dt = 0 = f gi(t)dt , i=1,2. (8)
C A

The singular integral equations (4) are solved simultane-

ously by using the numerical technique described in [5]. It may

be noted that if one of the cracks lies on the interface, the

corresponding integral equation would become that of second kind.

The numerical technique to treat such equations is described in

[6] and is used to solve the interface crack problems in [2].

The stress intensity factors K
I

and KII at all the crack tips

are defined as in [1]. As an example, for the crack in medium

(1) near the crack tip x+D, these can be expressed as
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KI :lim r /2(x-D) yy (x,h)
x-D

(9)
K 1 I lim '2(x-D) a xy (x,h)

x-D

The stress intensity factors can also be expressed in terms of

the unknown functions fi(x). The functions fi(x), which have

integrable singularities, may be written as

Gi(x)fi(x) = G (10)
1 /V(D-x) (x-C)

Equations (9) can now be written as

1 2p1
K1 - l+KK lim 22(D-x) f2 (x)

1 x-D

21+K1 r G2(D)
I+K 1

1 x1+D

2111
1+ K1 D-C G1 (D) 

Superscripts 1 and 2 on the stress intensity factors refer to

the cracks in medium 1 and 2 respectively.

DISCUSSION OF RESULTS

To demonstrate the interaction between parallel cracks, a

layered composite as shown in Figure 1 is assumed to contain two

parallel cracks, one in the mid-plane of the elastic layer and

the other in one of the half-planes. Figures 2-9 show the varia-

tions of the four stress intensity factors (at each crack tip)
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with the material and geometrical parameters entering into the

problem. First an epoxy layer with elastic properties p1 =

4.5 x 05 psi, v1 = 0.35 is sandwiched between two aluminum half-

planes: p2 = 107 psi and v2 = 0.3. Since the primary objective

of this work was to study the disturbance problem, the input

tractions were assumed to be uniform uni-axial stresses with zero

shear component, i.e., in equation (2)

p1 (X) = ql(x) = 0

P2(x) = ao or (12)

q2(x) = o

The crack in medium 1 was loaded first and, as expected, we get

negative stress intensity factors for crack 2. The results are

shown in Figure 2. Figure 3 shows similar results when only the

crack in medium 2 was loaded. It is clear that the results need

to be superimposed if both the cracks are loaded simultaneously.

In Figures 2 and 3, the stress intensity factors K1 K1 K2

and K2II with respect to the distance of crack 2 from the inter-

face are shown. The two cracks have been assumed to be of equal

length. We observe that the absolute magnitudes of all the K

values increase as crack 2 nears the interface. The layer thick-

ness here was assumed to be equal to the crack length. Figures

4 and 5 show similar plots for a layer of double the thickness.

Notice the decrease in the interaction between the two cracks

since they are farther apart now. Also, the stress intensity

factors at crack 1 due to the loading at this crack increase due

to increasing the layer thickness. In limit when h--, K1 = 1.0,
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KII K2 K2 = O. This effect is depicted in Figure 6,

where the stress intensity factors are plotted with respect to

the layer thickness. However, a reverse effect is observed at

the stress intensity factors at crack 2 due to the loading at

crack 2 itself, as shown in Figure 7. K2 and K2 decrease as

the layer thickness is increased and, in the limiting case when

h-g, these approach asymptotically to the values obtained for

the problem of a bimaterial medium containing a single crack in

one of the half-planes. Interaction terms, of course, vanish

as h+c. Figures 8 and 9 show the effect of the material proper-

ties of the composite constituents. Here an aluminum layer is

bonded between two epoxy half-planes. Similar observations are

made when the crack in medium 2 approaches the interface and

when the layer thickness is increased.

As a second example, the case of the elastic layer contain-

ing two collinear cracks at the mid-plane and located symmetri-

cally is considered. Since the problem is symmetrical, stress

intensity factors at only one of the collinear cracks need be

computed. In all numerical cases, the location of crack 2 and

the layer thickness have been kept fixed. Again either the

collinear cracks or crack 2 is loaded at a time. Variation of

the mode I stress intensity factor with respect to the distance

between the collinear cracks is shown in Figure 10. When these

collinear cracks are far away, only a little interaction between

the parallel crack is observed. Another interesting phenomenon

observed is that, if the two collinear cracks are close by, i.e.,
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c/a <1.25 (see insert in Figure 10 for the notation), the un-

stable crack propagation would first take place at the inner

crack tip, thus generating a single crack in the layer. On the

contrary, if the two cracks are far apart, i.e., if c/a> 1.25,

the outer crack tips would become unstable before the inner

crack tip. Figure 11 illustrates the mode II stress intensity

factors for the same problem. When crack 2 is loaded, the

stress intensity factors K 2 and K2 remain practically unaf-

fected due to the displacement of the collinear crack locations

(Figure 12). However, the interaction between these cracks is

quite strongly affected by the distance between the two collin-

ear cracks, as shown in Figure 13. Again, when the two cracks

come closer, KI at both the crack tips increases monotonically,

with faster rise in the inner crack tip. KII at the inner tip,

however, undergoes a maximum value and steadily decreases to a

very low value.

In conclusion, whenever there is a structure containing

multiple cracks, an analysis of the type described in this paper

is essential in order to find the critical configurations under

which the structure may be most vulnerable.

-10-



REFERENCES

1. F. Erdogan and G. Gupta, "The Stress Analysis of Multi-
Layered Composites with a Flaw", International Journal of
Solids Structures, Vol. 7, pp. 39-61, 1971.

2. F. Erdogan and G. D. Gupta, "Layered Composites with an
Interface Flaw", International Journal of Solids Structures,
Vol. 7, pp. 1089-1107, 1971.

3. M. Ratwani, "Wechselwirkung Von Rissen", InstitUt fur
Festkbrpermechanik der Fraunhofer-Gesellschaft, Freiburg,
West Germany, Report 5/72.

4. M. Ratwani, "Mehrfach Rissen im Verbundmaterialen", Institit
fur Festkbrpermechanik der Fraunhofer-Gesellschaft, Freiburg,
West Germany, Report 6/72.

5. F. Erdogan and G. D. Gupta, "On the Numerical Solution of a
Singular Integral Equation", Quarterly of Applied Mathemat-
ics, pp. 525-534, 1972.

6. F. Erdogan, "Approximate Solution of Systems of Singular
Integral Equations", SIAM Journal of Applied Mathematics,
17, pp. 1041-1059, 1969.

-11-



y

C-.-. C I(x )

- -Cr TL D
_~2ia_~iL,

h qf tq (x)

_ a" - A i ( ,i, A u

_ 2a _
pL2 Z/2

Figure 1. Geometry of the Layered Composite
with Collinear and Parallel Cracks.

2h
V1

,,2 v2

II

II

I



0.8

0.4

0.0

K

-0.4

-0.8

-1.2

- 1.6 _

-2.0

K,
cr /-r-a 1.0

I

h, /a

/ 2

Wr 'i'

Ll = 4.5X 05 psi.

/L2 = 107 psi.

2.0

7/1 = 0.3 5I

v=0.35
V,= o.302

Figure 2. Stress Intensity
P2 (x) = -a and

Factors vs. hl/a for

Pl(X) = ql(x) = q2(x)
h/a = 1.0,
= 0.

KIK'j



3.0

2.5

2.0

K2

1.5

1.0

0.5

0.0

Figure 3.

GLu = 4.5 X10 psi. Yl = 0.35

,u2 = 10 psi. 2 = 0.30

0.0

KI

- 0.2

The Case with q2(x) = -a and

p,(x) = P2 (X) = ql(x) = 0.



i

IKl

cvr-y -

K
a-,/s h,/a

5
,.l= 4.5XI0 psi.

7
IL2 = IO psi.

Figure 4. Stress Intensity Factors vs. hl/a for h/a = 2.0,
p2(x) = -a and p,(x) = ql(x) 2 (x) = 0.

1.2

0.8

0.4

0.0

K
cJfry

1.0

-0.4 -

2.0

2
KI

0 --./ -7-0.8 -

-1.2

vI= 0.35

I I

III



p. =4.5x 10 psi. = 0. 3 5

P/2 = 10 psi. 12 = 0.30

2
KI

o-,1 -va

h, /a

KI

0.0

-0.1

Figure 5. The Case with q2 (x) = -a and
Pl(X) = P2 (X) = ql(x) = 0.

2.8

2.4

2.0

1.6

K2

1.2

0.8

0.4

0.0

I
- K!

a','r

2Ka o''



/u- = 4.5X lO psi. I = 0.35
LU2 = 10 pi. /2 = 0.

3 0

vr__ _ h /a

I.0~~~~~~~~~~~~~~--
2

KV,

K2
I'"

Figure 6.
for h]/a =1 .0, P

2
(x)

: -o- and P1 (x) P
2
(x) = q

2
(x) .

1.2

0.8

0.4
K

0.0

0.4

-0.8

-1.2

1.0
2.n

I w



5
-1 = 4.5x 10 psi.

p,2= 10psi ·

K2I

1.0 h/a

Figure 7. The Case with q2 (x) = -a and

Pl(x) = P2 (X) = ql(x) = 0.

mv = 0.35

v2= 0.30

2.0

1.6

1.2
K2

c rys/-

0.8

0.4

0.0

2
Ks

o - ./ -7i

2.0 0.0

KI

-0.I
I KI

- it o-,/r-a



/
i

= 10 psi.

p 2 = 4.5 X1O psi.

V. = 0.30

/2= 0.35

hi/a

Figure 8. Stress Intensity Factors vs. hl/a for the Aluminum
Layer Sandwiched Between Epoxy Half-Planes.
h/a = 1.0, P2(x) = -a and q2(x) = O.

IK

0_11/ W

2.0

1.6

1.2

0.8
KI

0.4

0.0

Ia
Cr ../-r 2.0 0.0

K2

OV-70

I.W~~~~~~~~~~~~~~~~~~~

I.0
I

L K
LA

K1~~avv
oOJr--WG

A-.04



A - 1 0
7 psi.

5
.2 = 4.5 x 10 psi.

V/ =0.30

V2 = 0.35

2.0

K'I
I -aa

Figure 9. Stress Intensity Factors vs. h/a;
q2(x) = -a and P2 (x) = O.

hl/a = 1.0,

2K
2ry

0.8 -

2K

_ _ .O

0.4

K

0.0

-0.4

-0.8 -

- I~~~~~~I

h/a 1.0

Ka
cr,/r-a



Y

KID
I

cr'vf-

ICK
I

I I I I I I I I
0.4 0.6 a/c 0.8

2K1I
aer-a

Figure 10. Stress Intensity Factor KT vs. the
the Collinear Cracks (a/c). p2(x)

Distance
=-a and

Between
q2 (x) = 0.

x

0.8

0.4

Ki

0.0

-0.4

-0.8

I I

1.0



IDK~

-. 04
2

Ku

-. 08

-.12

Figure 11. K vs. a/c. P2 (x) = -o and q2 () = 0.
Figure ll Kii

.004

K.002

*002

I.0



K2K_

2
Ki

o- -,7

I I

0.4 a/c 0.6

q 2 (x) = -cr anc

1.6

1.;

KP
a-V-7ra

0.8

0.4

0.0 I .I

0.2
I I I I

0.8 1.0
J ~ i I I I I I I

I .

L-

2

I

d P2(X) = OFigure 12. KI vs. a/c.



.024

.020

.016

K
crVi-

.012

.008

.004

0.0

/ KIC
K0

aurr i ra

IC
Ka

o',/'F'E'

,ID

0 0.2 0.4 a/c 0.6 0.8

P2(X) = O.
KII vs. a/c. q2 (x) = -o and

I.0

Figure 13.


